Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38391608

RESUMO

Glaucoma, the leading cause of irreversible blindness worldwide, comprises a group of progressive optic neuropathies requiring early detection and lifelong treatment to preserve vision. Artificial intelligence (AI) technologies are now demonstrating transformative potential across the spectrum of clinical glaucoma care. This review summarizes current capabilities, future outlooks, and practical translation considerations. For enhanced screening, algorithms analyzing retinal photographs and machine learning models synthesizing risk factors can identify high-risk patients needing diagnostic workup and close follow-up. To augment definitive diagnosis, deep learning techniques detect characteristic glaucomatous patterns by interpreting results from optical coherence tomography, visual field testing, fundus photography, and other ocular imaging. AI-powered platforms also enable continuous monitoring, with algorithms that analyze longitudinal data alerting physicians about rapid disease progression. By integrating predictive analytics with patient-specific parameters, AI can also guide precision medicine for individualized glaucoma treatment selections. Advances in robotic surgery and computer-based guidance demonstrate AI's potential to improve surgical outcomes and surgical training. Beyond the clinic, AI chatbots and reminder systems could provide patient education and counseling to promote medication adherence. However, thoughtful approaches to clinical integration, usability, diversity, and ethical implications remain critical to successfully implementing these emerging technologies. This review highlights AI's vast capabilities to transform glaucoma care while summarizing key achievements, future prospects, and practical considerations to progress from bench to bedside.

2.
Genome Biol ; 25(1): 23, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229106

RESUMO

Sequence-specific RNA-binding proteins (RBPs) play central roles in splicing decisions. Here, we describe a modular splicing architecture that leverages in vitro-derived RNA affinity models for 79 human RBPs and the annotated human genome to produce improved models of RBP binding and activity. Binding and activity are modeled by separate Motif and Aggregator components that can be mixed and matched, enforcing sparsity to improve interpretability. Training a new Adjusted Motif (AM) architecture on the splicing task not only yields better splicing predictions but also improves prediction of RBP-binding sites in vivo and of splicing activity, assessed using independent data.


Assuntos
Splicing de RNA , Proteínas de Ligação a RNA , Humanos , Sítios de Ligação , Proteínas de Ligação a RNA/metabolismo , RNA/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...